Interior-point Methods for Nonconvex Nonlinear Programming: Complementarity Constraints
نویسندگان
چکیده
In this paper, we present the formulation and solution of optimization problems with complementarity constraints using an interior-point method for nonconvex nonlinear programming. We identify possible difficulties that could arise, such as unbounded faces of dual variables, linear dependence of constraint gradients and initialization issues. We suggest remedies. We include encouraging numerical results on the MacMPEC test suite of problems.
منابع مشابه
An Interior Point Method for Mathematical Programs with Complementarity Constraints (MPCCs)
Interior point methods for nonlinear programs (NLP) are adapted for solution of mathematical programs with complementarity constraints (MPCCs). The constraints of the MPCC are suitably relaxed so as to guarantee a strictly feasible interior for the inequality constraints. The standard primal-dual algorithm has been adapted with a modified step calculation. The algorithm is shown to be superline...
متن کاملInterior-Point Methods
The modern era of interior-point methods dates to 1984, when Karmarkar proposed his algorithm for linear programming. In the years since then, algorithms and software for linear programming have become quite sophisticated, while extensions to more general classes of problems, such as convex quadratic programming, semide nite programming, and nonconvex and nonlinear problems, have reached varyin...
متن کاملInterior Point Methods for Optimal Control of Discrete-time Systems
We show that recently developed interior point methods for quadratic programming and linear complementarity problems can be put to use in solving discrete-time optimal control problems, with general pointwise constraints on states and controls. We describe interior point algorithms for a discrete time linear-quadratic regulator problem with mixed state/control constraints, and show how it can b...
متن کاملImproved infeasible-interior-point algorithm for linear complementarity problems
We present a modified version of the infeasible-interior- We present a modified version of the infeasible-interior-point algorithm for monotone linear complementary problems introduced by Mansouri et al. (Nonlinear Anal. Real World Appl. 12(2011) 545--561). Each main step of the algorithm consists of a feasibility step and several centering steps. We use a different feasibility step, which tar...
متن کاملInterior-Point Algorithms, Penalty Methods and Equilibrium Problems
In this paper we consider the question of solving equilibrium problems—formulated as complementarity problems and, more generally, mathematical programs with equilibrium constraints (MPEC’s)—as nonlinear programs, using an interior-point approach. These problems pose theoretical difficulties for nonlinear solvers, including interior-point methods. We examine the use of penalty methods to get ar...
متن کامل